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Abstract ─ This paper is concerned with the 
mathematical analysis and numerical computation 
of the electromagnetic wave scattering by multiple 
open cavities, which are embedded in an infinite 
two-dimensional ground plane. By introducing a
new transparent boundary condition on the cavity 
apertures, the scattering problem is reduced to a 
boundary value problem on the two-dimensional 
Helmholtz equation imposed in the separated 
interior domains of the cavities. The existence and 
uniqueness of the weak solution for the model 
problem is studied by using a variational approach. 
A block Gauss-Seidel iterative method is 
introduced to solve the coupled system. Numerical 
examples are presented to show the efficiency and 
accuracy of the proposed method. 

Index Terms - Electromagnetic cavity, finite 
element method, Helmholtz equation, variational 
formulation. 

I. INTRODUCTION 
A cavity is referred to as a local perturbation 

of the infinite ground plane. Given the cavity 
structure and an incident wave, the scattering 
problem is to predict the electromagnetic field 
scattered by the cavity. It has been extensively 
examined by researchers for the time-harmonic 
analysis of cavity-backed apertures with 
penetrable material filling the cavity interior [14-
16, 18, 28]. Mathematical analysis of the problem 
including overfilled cavities, where the aperture is 
not planar and may protrude the ground plane, can 

be found in [1-4, 17, 19-24, 27]. A lot of work has 
been devoted to solve the problem by various 
numerical methods including finite element, finite 
difference, boundary element, and hybrid methods
[5, 7, 8, 11, 12, 25, 26, 29, 30]. All the model 
problems have been focused on a single cavity, 
which may limit the application of the problem in 
industry and military. This paper aims to extend 
the single cavity model to a more general multiple 
cavity model, and analyze and develop numerical 
methods for the associated boundary value 
problem. 

In this paper we focus on the Transverse 
Magnetic polarization (TM), where the modeling 
equation is the two-dimensional Helmholtz 
equation. Based on Fourier transform, a nonlocal 
transparent condition is introduced on the aperture, 
which connects the electric field in each individual 
cavity. By using the boundary condition, we 
reduce the multiple cavity problem into a 
boundary value problem imposed in the interiors 
of the cavities. The existence and uniqueness of 
the weak solution for the model problem is studied 
by using a variational approach. A block Gauss-
Seidel iterative method is introduced to solve the 
coupled system, where only a single cavity 
problem needs to be solved at each iteration. Thus, 
it is applicable of any efficient single cavity solver 
to the multiple cavity problem. Numerical 
examples are presented to show the efficiency and 
accuracy of the proposed method. We refer to [9, 
10, 13] for numerical methods to solve a related 
multiple obstacle scattering problem. 
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The paper is outlined as follows. In Section 2, 
a mathematical model for the single cavity 
problem is introduced, the variational formulation 
is presented, and the uniqueness and existence of 
the solution are examined. Section 3 is devoted to 
the study of the solution for the multiple cavity 
problem. The major new ingredient is the 
introduction of a transparent boundary condition. 
Section 4 addresses the numerical implementation 
and examples are shown to illustrate the method. 
The paper is concluded with some general remarks 
and directions for future research in Section 5. 
 

II. SINGLE CAVITY SCATTERING 
In this section, we study a single cavity 

problem, which is intended to serve as a basis for 
the multiple cavity problem. 
 
A. Model problem 

We focus on a two-dimensional geometry. The 
medium is assumed to be non-magnetic and has a 
constant magnetic permeability; i.e., 

0�� � , where 

0� is the magnetic permeability of vacuum. The 

medium is characterized by the dielectric 
permittivity � . 

As shown in Fig. 1, an open cavity �  
enclosed by the aperture � and the wall S , is 
placed on a perfectly conducting ground plane c� . 
Above the flat surface ,}0{ cy �����  the medium 
is assumed to be homogeneous with a positive 
dielectric permittivity 

0� . The medium inside the 

cavity is inhomogeneous with a variable dielectric 
permittivity ),( yx� . Assume further that: 
 0Im ,0Re ),( ����  ��� L . 

For the TM polarization, the magnetic field is 
transverse to the invariant direction. The time-
harmonic Maxwell equations can be reduced to the 
two-dimensional Helmholtz equation: 
 22  in 0 ������ Ruu ! . (1) 
The total field satisfies the boundary condition: 
 Su c ���  on 0 , (2) 
where 

0
22 ��"! � is the wavenumber and "  is the 

angular frequency. 
Let an incoming plane wave )cossin(0 ��! yxii eu ��  

be incident on the cavity from above, where �  is 
the incident angle with respect to the positive 
y axis, and 

000 ��"! �  is the wavenumber of the 

free space. 

Denote the reference field refu  as the solution 
of the homogeneous Helmholtz equation in the 
upper half space: 
 02

0 ��� refref uu !  in 2
�R , (3) 

together with boundary condition: 
 0�refu on ���c . (4) 
It can be shown from (3) and (4) that the reference 
field consists of the incident field and the reflected 
field: 
 riref uuu �� , 

where )cossin(0 ��! yxir eu ��� . 
The total field is composed of the reference 

field and the scattered field: 
 .sref uuu ��  
It can be verified from (1) and (3) that the 
scattered field satisfies: 
 02

0 ��� ss uu ! in 2
�R . (5) 

In addition, the scattered field is required to satisfy 
the radiation condition: 

 |),(|,0)(lim 0 yxuiu s
s

���
#
#

 $
%!

%
%

%
. (6) 

To describe the boundary value problem, we 
need to introduce some functional spaces. For 

)(2 ���� cLu , which is identified with )(2 RL , we 
denote by û  the Fourier transform of u  defined as: 
 &�

R

ix dxexuu .)()(ˆ ''  

Using Fourier modes, the norm on the space 
)(2 RL  can be characterized by: 

 .|ˆ|||||||
2

1

2
2

1

2

)(2 (
)

*
+
,

-
�(

)

*
+
,

-
� &&

RR
RL dudxuu '  

Denote the Sobolev space: 
 }1||for  ),(:{)( 21 .���� sLuDuH s , 
and the trace functional space: 
 }|ˆ|)1(:)({)( 222 &  /���

R

ss duRLuRH '' , 

whose norm is defined by: 

 2

1

22

)(
|ˆ|)1(|||| (

)

*
+
,

-
�� &

R

s
RH duu s '' . 

By taking the Fourier transform of (5) with 
respect to x , we obtain: 

 .0,0),(ˆ)(
),(ˆ 22

02

2

����
#

# yyu
y

yus

''!'  (7) 

Since the solution of (7) satisfies the radiation 
condition (6), we deduce that: 
 ( )ˆ ˆ( , ) ( ,0)s s i yu y u e 0 '' '� , (8) 
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where

12

1
3
4

��

/��
.||for  )(

,||for  )(
)(

0
2

1
2
0

2

0
2

1
22

0

!'!'

!''!'0
i

Taking the inverse Fourier transform of (8), we 
find that:

& ��
R

xiyiss deeuyxu '' ''0 )()0,(ˆ),( in .2
�R

Taking the normal derivative on ���c , which 
is the partial derivative with respect to y , and 
evaluating at 0�y yield:

& �
� �#

R

xi
y

s
y deuiyxu .)0,(ˆ)(|),( 0 '''0 ' (9)

For given u on ���c , define the boundary 
operator T :

& ��
R

xi deuiTu ,)0,(ˆ)( '''0 ' (10)

which leads to the transparent boundary condition 
for the scattered field on ���c :

).()( refref
y uuTuu ���#

Equivalently we have a transparent boundary 
condition for the total field:

gTuuy ��# on ���c , (11)

where
.cos2 sin

0
0 �!�! xirefref

y eiTuug ���#�

It can be shown that the boundary operator is 

continuous from )(2

1

RH to )(2

1

RH � . Furthermore, it 
has the following properties which ensures the 
uniqueness of the solution of the single cavity 
problem.

Lemma 1. Let )(2

1

RHu� . It holds that 0,Re .uTu
and 0,Im �uTu . Furthermore, if û is an 
analytical function with respect to' , 0,Re �uTu
or 0,Im �uTu implies 0�u .

To derive a transparent boundary condition for 
the total field on the aperture � , we need to make
the zero extension as follows: for any given u on
� , define

2
3
4

��
��

�
.,0

,,
)(~

cx
xu

xu

The zero extension is consistent with the problem
since the ground plane is a perfectly electrical 
conductor. Based on the extension and the 
transparent boundary condition (11), we have the 

transparent boundary condition for the total field 
on the aperture:

guTuy ��# ~ on � . (12)

Fig. 1. The problem geometry of a single cavity. 

B. Well-posedness 
Define a trace functional space:

)},(~:{)(
~ 2

1

2

1

RHuuH ���

whose norm is defined as the )(2

1

RH norm for its 
extension; i.e.,

.~
)()(

~ 2

1

2

1

RHH
uu

��

Define a dual paring:
., &

�
�
� vuvu

This dual paring for u and v is equivalent to the 
scalar product in )(2 RL for their extensions; i.e.,

.~,~, vuvu �
�

Denote by )(2

1

�
�

H the dual space of )(
~ 2

1

�H ; i.e., 

))'(
~

()( 2

1

2

1

���
�

HH . The norm on this space is 
characterized by:

.~

~,~
sup

)()(~
)(

2

1

2

1
2

1

RHRHv

H v
vu

u
�

�
��

Introduce a space:
}, on 0:)({)( 11 SuHuHS �����

which is a Hilbert space with the usual norm.
Multiplying a test function v on both sides of 

(1) and using the boundary conditions (2) and (12), 
we may deduce a variational problem: find u such 
that

),( allfor  ,),( 1 ���
� SHvvgvua (13)

where the sesquilinear form is:

&
�

�
��5�5� .,~)(),( 2 vuTvuvuvua ! (14)

Theorem 1. The variational problem (13) has a 
unique weak solution in )(1 �SH and the solution 
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satisfies the estimate: 
 1

1 2( ) ( )H H
u C g �

� �
. , 

where C  is a positive constant. 
Proof: Decompose the sesquilinear form (14) 

into 
21 aaa �� , where 

 &
�

�5�5� vuTvuvua ~,~),(1
, 

and 
 .),( 2

2 &
�

� vuvua !  

We conclude that from Lemma 1 and Poincare 
inequality that 

1a is coercive from: 

 

                ).( allfor                      

||~,~Re||),(Re

12

)(

22
1

1 ���

5��5�

�

��
&&

SH
HuuC

uvuTuuua
 

Next we prove the compactness of .2a  Define 
an operator )()(: 12 �$� HLK  by: 
 ),( allfor  ),(),( 1

21 ��� SHvvuavKua  

which explicitly gives that for all )(1 �� SHv , 
 & &

� �

��5�5 .~,~ 2 vuvuTKvKu !  

Using the coercivity of 
1a  and the Lax-Milgram 

lemma, it follows that: 
 .

)()( 21 ��
.

LH
uCKu  (15) 

Thus, K  is bounded from )(2 �L  to )(1 �H  and 

)(1 �H  is compactly imbedded into )(2 �L . Hence, 

)()(: 22 �$� LLK  is a compact operator. 
Define a function )(2 �� Lw  by requiring 

)(1 �� SHw  and satisfying: 
 ).( allfor  ,),( 1

1 ���
� SHvvgvwa  

It follows from the Lax-Milgram lemma again that: 
 1

1 2( ) ( )H H
w C g �

� �
. . (16) 

Using the operator K , we  can see that the 
variational problem (13) is equivalent to find 

)(2 �� Lu  such that: 
 .)( wuKI ��  (17) 
It follows from the uniqueness result and the 
Fredholm alternative that the operator KI �  has a 
bounded inverse. We then have the estimate: 
 .

)()( 22 ��
.

LL
wCu  

Combining (15)-(17), we deduce that: 

 

,             

             

)()(

)()(

)()()(

2

1
1

12

111

��

��

���

�..

�.

�.

HH

HL

HHH

gCwC

wuC

wKuu
 

which completes the proof. 
 
III. MULTIPLE CAVITY SCATTERING 

As shown in Fig. 2, we consider a situation of 
n  cavities, where the multiple open cavities 

n�� ,,1 �  enclosed by the apertures n�� ,,1 �  and the 

walls nSS ,,1 �  are placed on c� . Above the flat 

surface c
ny �������� �1}0{ , the medium is 

assumed to be homogeneous with a positive 
dielectric permittivity 

0� . The medium inside the 

cavity 
j�  is inhomogeneous with a variable 

dielectric permittivity ),( yxj� , which satisfies 

)(��  Lj� , 0Re �j� , 0Im �j�  for .,,1 nj ��  

We consider the two-dimensional Helmholtz 
equation for the total field: 
 , in ,0 2

1
2

��������� Ruu n�!  (18) 

together with the boundary condition: 
 . on ,0 1

c
nSSu ����� �  (19) 

Let the plane wave iu  be incident on the cavities 
from above. The total field u  is consisted of the 
incident field iu , the reflected field ru , and the 
scattered field su , where the scattered field is 
required to satisfy the radiation condition (6). 

To reduce the problem into the bounded 
domains ,,,1, njj ���  we need to derive a 

transparent boundary condition on 
j� . Rewrite 

(18)-(19) into n  single cavity scattering problem: 

 
, on 0              

, in 02

jj

jjjj

Su
uu
�

���� !  (20) 

where 
0

22 ��"! jj � . If u  is the solution of (18)-(19) 

and 
ju  is the solution of (20), respectively, then we 

have 
j

uuj �� | for .,,1 nj ��  

For )0,(xuj
, define its zero extension: 

 
2
3
4

��
��

�
.\for  0

,for  )0,(
)0,(~

j

jj
j Rx

xxu
xu  

For the total field u , define its extension: 

 
2
3
4

��
��

�
.for  0

,for  )0,(
)0,(~

c
jj

x
xxu

xu  

It follows from the definition of the extensions that 
we have: 

 6
�

�������
n

j

c
njuu

1
1 . on ~~ �  

Repeating the same steps as those for the single 
cavity problem, we have the following transparent 
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boundary condition for the extended field: 
, on ~~

1
c

ny guTu ��������# � (21)

which gives the transparent boundary for 
ju : 

6
7�

����#
n

jii
jijjy guTuTu

,1

. on ~~ (22)

As we can see from (22), the boundary condition 
for njuj ,,1, �� is coupled with each other, which 

is the major difference between the single cavity 
problem and the multiple cavity problem. 

Next we present a variational formulation for 
the multiple cavity problem. Denote 

n������ �1
, n������ �1

and nSSS ��� �1
.

Define a trace functional space:

).(
~

)(
~

)(
~ 2

1

1
2

1

2

1

nHHH �88��� �
Its norm is characterized by: 

.
2

)(
~1

2

)(
~

2

1
2

1

jH

n

j
j

H
uu

���
6�

Denote )()()( 2

1

1
2

1

2

1

nHHH �88���
���

� , which is 

the dual space of )(
~ 2

1

�H . The norm on the space is 
characterized by: 

.
2

)(1

2

)(
2

1
2

1

jH

n

j
j

H
uu

��� �
�

6�

Introduce the space: 

1

1 1 1
1( ) ( ) ( )

nS S S nH H H� � � 8 8 �
nS (
n

1 (1 (1 ( ,

which is a Hilbert space with norm characterized 
by: 

.
2

)(1

2

)(
1

1

jH

n

j
jH

uu
��

� 6�

Similarly, we may obtain the variational 
formulation for the multiple cavity problem: find 

)(1 �� SHu with
j

uu j �� | such that

),( allfor  ,),( 1

1

���6
�

� S

n

j
j Hvvgvua

j

(23)

where the sesquilinear form is: 

6 & 66
� � � �

��5�5�
n

j

n

j

n

i
jijjjjj

j

vuTvuvuvua
1 1 1

2 .~,~)(),( !

We have the following well-posedness result. 
The proof is similar in nature as that of the single 
cavity problem and is omitted here for brevity. 

Theorem 2. The variational problem (23) has a 
unique weak solution in and the solution satisfies 
the estimate: 

1
1 2( ) ( )H H

u C g �
� �
. ,

where C is a positive constant. 

Fig. 2. The problem geometry for multiple cavities.

IV. NUMERICAL EXPERIMENTS 
In this section, we discuss the computational 

aspects and present some examples for the 
multiple cavity problem. 

A. Finite element formulation 
Let 

jM be a regular conforming triangulation 

of 
j� and )(1

jSj j
HV �9 be the conforming linear 

finite element space over 
jM . Denote 

nVVV 88� �1
. The finite element approximation to 

the multiple cavity problem is to find hu with 

j
h Vu � such that 

, allfor  ,),(
1

Vvvgvua h
n

j

h
j

hh

j
��6

�
�

(24) 

where the sesquilinear form 

6 & 66
� � � �

��5�5�
n

j

n

j

n

i

h
j

h
j

h
j

h
jj

h
j

h
j

hh

j

vuTvuvuvua
1 1 1

2 .~,~)(),( !

For any nj ..1 , we denote by 
jP the set of 

vertices of 
jM , which are not on the cavity wall 

jS , 

and let 
jj Vr �)(� be the nodal basis function 

belonging to vertex 
jPr� . Using the basis 

functions, the solution of (24) is represented as: 
.)()(6

�

�
jPr

jj
h
j rruu �

The discrete problem (24) is equivalent to the 
following system of algebraic equations: 

,GAU � (25) 
where 

,

,,2,1

2,2,222.1

1,1,21,11

(
(
(
(

)

*

+
+
+
+

,

-

���

���
���

�

nnnnn

n

n

BABB

BBAB
BBBA

A

�
����

�
�
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.),,,(

,),,,(

21

21

T
n

T
n

gggG
uuuU

�
�

�

�  

Hence, each 
ju  is an unknown vector whose 

entries are )()( ruru h
jj �  for all 

jPr� , 
jA  is the 

stiffness matrix for the discrete problem and its 
entries are defined by: 
 ,)]'()()'()([)',( 2&

�

�5�5�
j

rrrrrrA jjjjjj ��!��  

for all 
jPrr �', . The entries of 

ijB ,
 are defined by: 

 
, ( , ') ,  for all , 'j i i j j jB r r T r r P� �� � :�i j  for ali ,, f l for alf lfor al for al,,, , 

and the entries of each vector 
jg  are given by: 

 . allfor  )(,)( jjjj Prrgrg
j

�:��
�

�  

A block Gauss-Seidel method is adopted to 
solve (25). Given )0(U , define 1,)( �kU k  by the 
solution of the following system of equations: 

 

.1 ,                                

)(

1

)1(
,

1

1

)(
,

)(
,

njuB

uBguBA

n

ji

k
iij

j

i

k
iijj

k
jjjj

..�

���

6

6

��

�

�

�  (26) 

The block Gauss-Seidel iteration (26) is equivalent 
to apply the finite element method to solve the 
following problem: let 0)0( �ju , define )(k

ju  for 

1�k  by the solutions of the decoupled equations 

 

, on ~~

, on 0                             

, in 0             

1

)1(

1

)()(

)(

)(2)(

66
��

�

�

����#

�

����

n

ji
j

k
i

j

i

k
i

k
jy

j
k

j

j
k

jj
k

j

guTuTu

Su

uu !
 (27) 

for nj ,,1�� . Therefore, we only need to solve a 
single cavity problem (27) at each iteration. 
 
B. Transparent boundary condition 

The transparent boundary conditions (11) and 
(22) are not convenient to be implemented 
numerically. We take an alternative and equivalent 
transparent boundary condition [7]. 

Let 

 )]()([
4

)',( 0
)1(

00
)1(

0 %!%! HHirrG ��  

be the Green function of the two-dimensional 
Helmholtz equation in the upper half space, where 

)1(
0H  is the Hankel function of the first kind with 

order zero; |'||,'|),','('),,( rrrryxryxr ������ %% , 
and )','(' yxr ��  is the image of 'r  with respect to 

the real axis. By the Green’s theorem and the 
radiation condition, we obtain: 
 &

�

�
�

�# ,')0,'(|)'|(
|'|

1
2

)0,( 0
)1(

1
0 drrurrH

rr
ixu ss

y !!  

where )1(
1H  is the Hankel function of the first kind 

with order one. Hence, the alternative boundary 
condition is: 
 , on ���# gTuuy

 (28) 

where the boundary operator T  is defined as: 

 &
�

�
�

� '.)0,'(|)'|(
|'|

1
2 0

)1(
1

0 drrurrH
rr

iTu !!  (29) 

Here the integral is understood in the sense of 
Hadamard finite-part. For multiple cavities with 
apertures n���� �1

, the boundary operator is 

defined as: 

 6&
� �

�
�

�
n

j
j

drrurrH
rr

iTu
1

0
)1(

1
0 '.)0,'(|)'|(

|'|
1

2
!!  

The boundary operator (29) can be approximated 
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where xh  is the step size of the partition for the 

cavity aperture � , 
1Y  and 

1J  are Bessel functions 
of the second and first kind with order one, 
respectively. Therefore, the boundary integral 

vTu,  in the weak formulation for the cavity 

problem can be approximated by any numerical 
quadratures. 
 
C. Numerical examples 

The physical parameter of interest is the Radar 
Cross Section (RCS), which is defined by: 

 .|)(|
4 2

0

�
!

� P�  
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Here � is the observation angle and P is the far-
field coefficient given by: 

&
�

� .)0,(sin
2

)( cos0 0 dxexuP xi �!�!�

When the incident and observation directions are 
the same, � is called the backscatter RCS, which 
is defined by: 

dB.)(log10)(r RCSBackscatte 10 ��� �

Example 1. Consider a plane wave scattering from 
a rectangular cavity with 1 meter wide and 0.25 
meters deep at normal incidence; i.e., 0�� . Two 
different cases are considered: an empty cavity 
with 

0!! � and a cavity filled with a 

homogeneous medium with )4(2
0

2 i��!! . These 

two cases have been considered as standard test 
problems in [14]. The Rectangular domain 

]0.0 ,25.0[]5.0 ,5.0[ �8� is first divided into 401608
small equal rectangles and then each small 
rectangle is subdivided into two equal triangles. 
Numerical results are obtained by using a linear 
finite element over triangles at the wavenumber 

�! 20 � . Figures 3 and 4 show the magnitude and 

the phase of the total field on the aperture at the 
normal incidence, the backscatter RCS for the 
empty cavity and the filled cavity, respectively. 
We observe the coincidence of the numerical 
results obtained in [19] (circled) and our numerical 
method (solid line). 

Fig. 3. The magnitude, phase, and backscatter 
RCS of the total field for Example 1 of the empty 
cavity. 

Fig. 4. The magnitude, phase, and backscatter 
RCS of the total field for Example 1 of the filled 
cavity. 

Example 2. Consider the normal incidence of a 
plane wave onto two identical rectangular cavities. 
Each cavity is 1 meter wide and 0.25 meters deep; 
they are 1 meter distance away from each other. 
The two rectangular domains are given as follows: 
 cavity one: ],0.0 ,25.0[]5.0 ,5.1[ �8��
 cavity two: ].0.0 ,25.0[]5.1 ,5.0[ �8
Each rectangular domain is divided into 401608
small equal rectangles and then each small 
rectangle is subdivided into two equal triangles. 
Three types of cavities are considered: (type one) 
two empty cavities with 

021 !!! �� ; (type two) 

two filled cavities with )4(2
0

2
2

2
1 i��� !!! ; (type 

three) one empty cavity with 
01 !! � and one filled 

cavity with )4(2
0

2
2 i��!! . Figures 5, 6 and 7 show 

the magnitude and the phase of the total field on 
the apertures at the normal incidence and the 
backscatter RCS for the type one, type two and 
type three cavities, respectively. These numerical 
results are obtained by the block Gauss-Seidel 
iterative method. To show the convergence of the 
iterative method, we define the error between two 
consecutive approximations: 

,max
)(

)1()(

1
2

jL

k
j

k
jkjk uue

�

�

..
��

where k is the number of iteration. Figure 8 shows 
the error ke of two consecutive approximations 

against the number of iterations for all three types 
of cavities. It can be seen from Fig. 8, that more 
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number of iterations are needed for the type one 
cavities to reach the same level accuracy as the 
other two types of cavities. The reason is that the 
cavity for either type two or type three is filled 
with complex medium, which accounts for the 
absorption of the energy, and thus, the damping of 
the amplitude of the field. 
 

 

 
 
Fig. 5. The magnitude, phase, and backscatterer 
RCS for Example 2 of the type one cavity. 
 

 

 
 
Fig. 6. The magnitude, phase, and backscatterer 
RCS for Example 2 of the type two cavity. 
 

 

 
 
Fig. 7. The magnitude, phase, and backscatterer 
RCS for Example 2 of the type three cavity. 
 

 
 
Fig 8. Convergence of the Gauss-Seidel iteration 
for Example 2. 
 
Example 3. Consider the scattering of a triple 
cavity model. Let a plane wave be incident onto 
three identical rectangular cavities at the normal 
direction. Each cavity is 1 meter wide and 0.25 
meters deep; there are 1 meter distance away from 
each other. The three rectangular domains are 
given as follows: 
 cavity one: ],0.0 ,25.0[]5.1 ,5.2[ �8��  
 cavity two: ],0.0 ,25.0[]5.0 ,5.0[ �8�  
 cavity three: [1.5,  2.5] [ 0.25, 0.0]8 � . 
Again, each rectangular domain is divided into 

401608  small equal rectangles and then each small 
rectangle is subdivided into two equal triangles. 
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Cavities one and three are filled with the same 
homogeneous medium with )4(2

0
2
3

2
1 i��� !!! and 

cavity two is an empty cavity with 
0!! � . Figure 9 

shows the magnitude and the phase of the total 
field on the apertures at the normal incidence and 
the backscatter RCS. 

Fig 9. The magnitude, phase, and backscatter RCS 
of the total field for Example 3. 

V. CONCLUSION 
We studied the problem of electromagnetic 

scattering by multiple cavities embedded in the 
infinite two-dimensional ground plane. The 
scattering problem was reduced into a boundary 
value problem by introducing a transparent 
boundary condition. Based on the variational 
formulation, we proved the uniqueness and 
existence of the weak solution for the model 
problem. We employed a block Gauss-Seidel 
iterative method to decouple the coupled system 
arising from the multiple interaction among 
cavities. At each step of iteration, it required to 
solve only a single cavity problem. Three 
numerical examples were considered, a single 
cavity, two cavities and three cavities, with and/or 
without filling. The results show the convergence 
of the block Gauss-Seidel iterative method for the 
examples. We point out some future directions 
along the line of our present work. The first is to 
analyze the convergence of the Gauss-Seidel 
iterative method and investigate the parameters, 
such as separation distance among cavities, 

wavenumber and cavity size, which requires 
further mathematical analysis of the stability of the 
cavity scattering problem [6]. Another project is to 
study the multiple overfilled cavity problem and 
the model problem of three-dimensional Maxwell 
equations. 
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